
Carnegie Mellon

1

Design of Digital Circuits 2017
Srdjan Capkun
Onur Mutlu

Adapted from Digital Design and Computer Architecture, David Money Harris & Sarah L. Harris ©2007 Elsevier

http://www.syssec.ethz.ch/education/Digitaltechnik_17

Cache Architectures

Carnegie Mellon

2

What Will We Learn ?

 Brief review of how data can be stored

 Memory System Performance Analysis

 Caches

Carnegie Mellon

3

Review: What were Memory Elements ?

 Memories are large blocks

▪ A significant portion of a modern circuit is memory.

 Memories are practical tools for system design

▪ Programmability, reconfigurability all require memory

 Allows you to store data and work on stored data

▪ Not all algorithms are designed to process data as it comes, some
require data to be stored.

▪ Data type determines required storage

▪ SMS: 160 bytes

▪ 1 second normal audio: 64 kbytes

▪ 1 HD picture: 7.32 Mbytes

Carnegie Mellon

4

How Can We Store Data

▪ Flip-Flops (or Latches)

▪ Very fast, parallel access

▪ Expensive (one bit costs 20+ transistors)

▪ Static RAM

▪ Relatively fast, only one data word at a time

▪ Less expensive (one bit costs 6 transistors)

▪ Dynamic RAM

▪ Slower, reading destroys content (refresh), one data word at a
time, needs special process

▪ Cheaper (one bit is only a transistor)

▪ Other storage technology (hard disk, flash)

▪ Much slower, access takes a long time, non-volatile

▪ Per bit cost is lower (no transistors directly involved)

Carnegie Mellon

5

Array Organization of Memories

Address

Data

1024-word x

32-bit

Array

10

32

 Efficiently store large amounts
of data

▪ Consists of a memory array to store
data

▪ The address selects one row of the
array

▪ The data in the row is read out

 An M-bit value can be read or
written at each unique N-bit
address

▪ All values in array can be accessed

▪ … but only M-bits at a time

Carnegie Mellon

7

Introduction

 Computer performance depends on:

▪ Processor performance

▪ Memory system performance

Processor Memory
Address

MemWrite

WriteData

ReadData

WE

CLKCLK

Carnegie Mellon

8

Introduction

 Up until now, assumed memory could be accessed in 1
clock cycle

 But that hasn’t been true since the 1980’s

Carnegie Mellon

9

Memory System Challenge

 Make memory system
appear as fast as processor

 Use a hierarchy of memories

 Ideal memory:

▪ Fast

▪ Cheap (inexpensive)

▪ Large (capacity)

 But we can only choose two!

Carnegie Mellon

10

Memory Hierarchy

Cache

Main Memory

Virtual Memory

Size

S
p
e
e
d

Technology cost / GB Access time

SRAM ~ $10,000 ~ 1 ns

DRAM ~ $100 ~ 100 ns

Hard Disk ~ $1 ~ 10,000,000 ns

Carnegie Mellon

11

Locality

 Exploit locality to make memory accesses fast

 Temporal Locality:

▪ Locality in time (e.g., if looked at a Web page recently, likely to look at
it again soon)

▪ If data used recently, likely to use it again soon

▪ How to exploit: keep recently accessed data in higher levels of
memory hierarchy

 Spatial Locality:

▪ Locality in space (e.g., if read one page of book recently, likely to read
nearby pages soon)

▪ If data used recently, likely to use nearby data soon

▪ How to exploit: when accessing data, bring nearby data into higher
levels of memory hierarchy too

Carnegie Mellon

12

Memory Performance

 Hit: is found in that level of memory hierarchy

 Miss: is not found (must go to next level)

Hit Rate = # hits / # memory accesses
= 1 – Miss Rate

Miss Rate = # misses / # memory accesses
= 1 – Hit Rate

 Average memory access time (AMAT): average time it
takes for processor to access data

AMAT = tcache + MRcache[tMM + MRMM(tVM)]

Carnegie Mellon

13

Memory Performance Example 1

A program has 2,000 load and store instructions. 1,250 of these data
values found in cache. The rest are supplied by other levels of memory
hierarchy

What are the hit and miss rates for the cache?

Hit Rate =

Miss Rate =

Carnegie Mellon

14

Memory Performance Example 1

A program has 2,000 load and store instructions. 1,250 of these data
values found in cache. The rest are supplied by other levels of memory
hierarchy

What are the hit and miss rates for the cache?

Hit Rate = 1250/2000 = 0.625

Miss Rate = 750/2000 = 0.375 = 1 – Hit Rate

Carnegie Mellon

15

Memory Performance Example 2

Suppose a processor has 2 levels of hierarchy: cache and main
memory:

▪ tcache = 1 cycle,

▪ tMM = 100 cycles

What is the AMAT of the program from Example 1?

AMAT =

Carnegie Mellon

16

Memory Performance Example 2

Suppose a processor has 2 levels of hierarchy: cache and main
memory:

▪ tcache = 1 cycle,

▪ tMM = 100 cycles

What is the AMAT of the program from Example 1?

AMAT = tcache + MRcache(tMM)

= [1 + 0.375(100)] cycles

= 38.5 cycles

Carnegie Mellon

17

Cache

A safe place to hide things

 Highest level in memory hierarchy

 Fast (typically ~ 1 cycle access time)

 Ideally supplies most of the data to the processor

 Usually holds most recently accessed data

Carnegie Mellon

18

Cache Design Questions

 What data is held in the cache?

 How is data found?

 What data is replaced?

We’ll focus on data loads, but stores follow same principles

Carnegie Mellon

19

What data is held in the cache?

 Ideally, cache anticipates data needed by processor and
holds it in cache

 But impossible to predict future

 So, use past to predict future – temporal and spatial
locality:

▪ Temporal locality: copy newly accessed data into cache. Next time
it’s accessed, it’s available in cache.

▪ Spatial locality: copy neighboring data into cache too. Block size =
number of bytes copied into cache at once.

Carnegie Mellon

20

Cache Terminology

 Capacity (C):

▪ the number of data bytes a cache stores

 Block size (b):

▪ bytes of data brought into cache at once

 Number of blocks (B = C/b):

▪ number of blocks in cache: B = C/b

 Degree of associativity (N):

▪ number of blocks in a set

 Number of sets (S = B/N):

▪ each memory address maps to exactly one cache set

Carnegie Mellon

21

How is data found?

 Cache organized into S sets

 Each memory address maps to exactly one set

 Caches categorized by number of blocks in a set:

▪ Direct mapped: 1 block per set

▪ N-way set associative: N blocks per set

▪ Fully associative: all cache blocks are in a single set

 Examine each organization for a cache with:

▪ Capacity (C = 8 words)

▪ Block size (b = 1 word)

▪ So, number of blocks (B = 8)

Carnegie Mellon

22

Direct Mapped Cache

7 (111)

00...00010000

230 Word Main Memory

mem[0x00...00]

mem[0x00...04]

mem[0x00...08]

mem[0x00...0C]

mem[0x00...10]

mem[0x00...14]

mem[0x00...18]

mem[0x00..1C]

mem[0x00..20]

mem[0x00...24]

mem[0xFF...E0]

mem[0xFF...E4]

mem[0xFF...E8]

mem[0xFF...EC]

mem[0xFF...F0]

mem[0xFF...F4]

mem[0xFF...F8]

mem[0xFF...FC]

23 Word Cache

Set Number

Address

00...00000000

00...00000100

00...00001000

00...00001100

00...00010100

00...00011000

00...00011100

00...00100000

00...00100100

11...11110000

11...11100000

11...11100100

11...11101000

11...11101100

11...11110100

11...11111000

11...11111100

6 (110)

5 (101)

4 (100)

3 (011)

2 (010)

1 (001)

0 (000)

Carnegie Mellon

23

Direct Mapped Cache Hardware

DataTag

00
Tag Set

Byte

OffsetMemory

Address

DataHit

V

=

27 3

27 32

8-entry x

(1+27+32)-bit

SRAM

Carnegie Mellon

24

Direct Mapped Cache Performance

MIPS assembly code
addi $t0, $0, 5

loop: beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0xC($0)
lw $t3, 0x8($0)
addi $t0, $t0, -1
j loop

done:

DataTagV

00...001 mem[0x00...04]

0

0

0

0

0

00
Tag Set

Byte

Offset
Memory

Address

V
3

00100...00

1

00...00

00...00

1

mem[0x00...0C]

mem[0x00...08]

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

Miss Rate =

Carnegie Mellon

25

Direct Mapped Cache Performance

MIPS assembly code
addi $t0, $0, 5

loop: beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0xC($0)
lw $t3, 0x8($0)
addi $t0, $t0, -1
j loop

done:

DataTagV

00...001 mem[0x00...04]

0

0

0

0

0

00
Tag Set

Byte

Offset
Memory

Address

V
3

00100...00

1

00...00

00...00

1

mem[0x00...0C]

mem[0x00...08]

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

Miss Rate = 3/15
= 20%

Temporal Locality
Compulsory Misses

Carnegie Mellon

26

Direct Mapped Cache: Conflict

MIPS assembly code
addi $t0, $0, 5

loop: beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0x24($0)
addi $t0, $t0, -1
j loop

done:

DataTagV

00...001
mem[0x00...04]

0

0

0

0

0

00
Tag Set

Byte

Offset
Memory

Address

V
3

00100...01

0

0

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

mem[0x00...24]

Miss Rate =

Carnegie Mellon

27

Direct Mapped Cache: Conflict

MIPS assembly code
addi $t0, $0, 5

loop: beq $t0, $0, done
lw $t1, 0x4($0)
lw $t2, 0x24($0)
addi $t0, $t0, -1
j loop

done:

DataTagV

00...001
mem[0x00...04]

0

0

0

0

0

00
Tag Set

Byte

Offset
Memory

Address

V
3

00100...01

0

0

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

mem[0x00...24]

Miss Rate = 10/10
= 100%

Conflict Misses

Carnegie Mellon

28

N-Way Set Associative Cache

DataTag

Tag Set

Byte

OffsetMemory

Address

Data

Hit
1

V

=

01

00

32 32

32

DataTagV

=

Hit
1Hit

0

Hit

28 2

28 28

Way 1 Way 0

Carnegie Mellon

29

N-way Set Associative Performance

MIPS assembly code

addi $t0, $0, 5
loop: beq $t0, $0, done

lw $t1, 0x4($0)
lw $t2, 0x24($0)
addi $t0, $t0, -1
j loop

done:

DataTagV DataTagV

00...001 mem[0x00...04]00...10 1mem[0x00...24]

0

0

0

0

0

0

Way 1 Way 0

Set 3
Set 2
Set 1
Set 0

Miss Rate =

Carnegie Mellon

30

N-way Set Associative Performance

MIPS assembly code

addi $t0, $0, 5
loop: beq $t0, $0, done

lw $t1, 0x4($0)
lw $t2, 0x24($0)
addi $t0, $t0, -1
j loop

done:

Miss Rate = 2/10

= 20%

Associativity reduces conflict
misses

DataTagV DataTagV

00...001 mem[0x00...04]00...10 1mem[0x00...24]

0

0

0

0

0

0

Way 1 Way 0

Set 3
Set 2
Set 1
Set 0

Carnegie Mellon

31

Fully Associative Cache

 No conflict misses

 Expensive to build

DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV

Carnegie Mellon

32

Spatial Locality?

 Increase block size:

▪ Block size, b = 4 words

▪ C = 8 words

▪ Direct mapped (1 block per set)

▪ Number of blocks, B = C/b = 8/4 = 2

DataTag

00
Tag

Byte

OffsetMemory

Address

Data

V

0
0

0
1

1
0

1
1

Block

Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 0

Carnegie Mellon

33

Direct Mapped Cache Performance

addi $t0, $0, 5
loop: beq $t0, $0, done

lw $t1, 0x4($0)
lw $t2, 0xC($0)
lw $t3, 0x8($0)
addi $t0, $t0, -1
j loop

done:

00...00 0 11

DataTag

00
Tag

Byte

OffsetMemory

Address

Data

V

0
0

0
1

1
0

1
1

Block

Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 000...001 mem[0x00...0C]

0

mem[0x00...08] mem[0x00...04] mem[0x00...00]

Miss Rate =

Carnegie Mellon

34

Direct Mapped Cache Performance

addi $t0, $0, 5
loop: beq $t0, $0, done

lw $t1, 0x4($0)
lw $t2, 0xC($0)
lw $t3, 0x8($0)
addi $t0, $t0, -1
j loop

done:

Miss Rate = 1/15

= 6.67%

Larger blocks reduce
compulsory misses through
spatial locality

00...00 0 11

DataTag

00
Tag

Byte

OffsetMemory

Address

Data

V

0
0

0
1

1
0

1
1

Block

Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 000...001 mem[0x00...0C]

0

mem[0x00...08] mem[0x00...04] mem[0x00...00]

Carnegie Mellon

35

Cache Organization Recap

 Main Parameters

▪ Capacity: C

▪ Block size: b

▪ Number of blocks in cache: B = C/b

▪ Number of blocks in a set: N

▪ Number of Sets: S = B/N

Organization
Number of Ways

(N)
Number of Sets

(S = B/N)

Direct Mapped 1 B

N-Way Set Associative 1 < N < B B / N

Fully Associative B 1

Carnegie Mellon

36

Capacity Misses

 Cache is too small to hold all data of interest at one time

▪ If the cache is full and program tries to access data X that is not in
cache, cache must evict data Y to make room for X

▪ Capacity miss occurs if program then tries to access Y again

▪ X will be placed in a particular set based on its address

 In a direct mapped cache, there is only one place to put X

 In an associative cache, there are multiple ways where X
could go in the set.

 How to choose Y to minimize chance of needing it again?

▪ Least recently used (LRU) replacement: the least recently used
block in a set is evicted when the cache is full.

Carnegie Mellon

37

Types of Misses

 Compulsory: first time data is accessed

 Capacity: cache too small to hold all data of interest

 Conflict: data of interest maps to same location in cache

 Miss penalty: time it takes to retrieve a block from lower
level of hierarchy

Carnegie Mellon

38

LRU Replacement

MIPS assembly

lw $t0, 0x04($0)
lw $t1, 0x24($0)
lw $t2, 0x54($0)

DataTagV DataTagVU

DataTagV DataTagVU

(a)

(b)

Set Number
3 (11)

2 (10)

1 (01)

0 (00)

Set Number
3 (11)

2 (10)

1 (01)

0 (00)

Carnegie Mellon

39

LRU Replacement

MIPS assembly

lw $t0, 0x04($0)
lw $t1, 0x24($0)
lw $t2, 0x54($0)

DataTagV

0

DataTagV

0

0

0

0

0

U

mem[0x00...04]1 00...000mem[0x00...24] 100...010

0

0

0

0

DataTagV

0

DataTagV

0

0

0

0

0

U

mem[0x00...54]1 00...101mem[0x00...24] 100...010

0

0

0

1

(a)

(b)

Way 1 Way 0

Way 1 Way 0

Set 3 (11)
Set 2 (10)
Set 1 (01)
Set 0 (00)

Set 3 (11)
Set 2 (10)
Set 1 (01)
Set 0 (00)

Carnegie Mellon

40

Caching Summary

 What data is held in the cache?

▪ Recently used data (temporal locality)

▪ Nearby data (spatial locality, with larger block sizes)

 How is data found?

▪ Set is determined by address of data

▪ Word within block also determined by address of data

▪ In associative caches, data could be in one of several ways

 What data is replaced?

▪ Least-recently used way in the set

Carnegie Mellon

41

Miss Rate Data

Bigger caches reduce capacity misses

Greater associativity reduces conflict misses

Adapted from Patterson & Hennessy, Computer Architecture: A Quantitative Approach

Carnegie Mellon

42

Miss Rate Data

 Bigger block size reduces compulsory misses

 Bigger block size increases conflict misses

Carnegie Mellon

43

Multilevel Caches

 Larger caches have lower miss rates, longer access times

 Expand the memory hierarchy to multiple levels of caches

▪ Level 1: small and fast (e.g. 16 KB, 1 cycle)

▪ Level 2: larger and slower (e.g. 256 KB, 2-6 cycles)

 Even more levels are possible

Carnegie Mellon

44

Intel Pentium III Die

Carnegie Mellon

45

Virtual Memory

 Gives the illusion of a bigger memory without the high
cost of DRAM

 Main memory (DRAM) acts as cache for the hard disk

Carnegie Mellon

46

The Memory Hierarchy

Cache

Main Memory

Virtual Memory

Capacity

S
p
e
e
d

Technology cost / GB Access time

SRAM ~ $10,000 ~ 1 ns

DRAM ~ $100 ~ 100 ns

Hard Disk ~ $1 ~ 10,000,000 ns

 Physical Memory: DRAM (Main Memory)

▪ Faster, Not so large, Expensive

 Virtual Memory: Hard disk

▪ Slow, Large, Cheap

Carnegie Mellon

47

The Hard Disk

Read/Write

Head

Magnetic

Disks

Carnegie Mellon

48

Virtual Memory

 Each program uses virtual addresses

▪ Entire virtual address space stored on a hard disk.

▪ Subset of virtual address data in DRAM

▪ CPU translates virtual addresses into physical addresses

▪ Data not in DRAM is fetched from the hard disk

 Each program has its own virtual to physical mapping

▪ Two programs can use the same virtual address for different data

▪ Programs don’t need to be aware that others are running

▪ One program (or virus) can’t corrupt the memory used by another

▪ This is called memory protection

Carnegie Mellon

49

Cache/Virtual Memory Analogues

Cache Virtual Memory

Block Page

Block Size Page Size

Block Offset Page Offset

Miss Page Fault

Tag Virtual Page Number

Carnegie Mellon

50

Virtual Memory Definitions

 Page size: amount of memory transferred from hard disk
to DRAM at once

 Address translation: determining the physical address
from the virtual address

 Page table: lookup table used to translate virtual
addresses to physical addresses

Carnegie Mellon

51

Virtual and Physical Addresses

 Most accesses hit in physical memory

 But programs have the large capacity of virtual memory

Carnegie Mellon

52

Address Translation

Carnegie Mellon

53

Virtual Memory Example

 System:

▪ Virtual memory size: 2 GB = 231 bytes

▪ Physical memory size: 128 MB = 227 bytes

▪ Page size: 4 KB = 212 bytes

Carnegie Mellon

54

Virtual Memory Example

 System:

▪ Virtual memory size: 2 GB = 231 bytes

▪ Physical memory size: 128 MB = 227 bytes

▪ Page size: 4 KB = 212 bytes

 Organization:

▪ Virtual address: 31 bits

▪ Physical address: 27 bits

▪ Page offset: 12 bits

▪ # Virtual pages = 231/212 = 219 (VPN = 19 bits)

▪ # Physical pages = 227/212 = 215 (PPN = 15 bits)

Carnegie Mellon

55

Virtual Memory Example

What is the physical address of virtual address 0x247C?
▪ VPN = 0x2

▪ VPN 0x2 maps to PPN 0x7FFF

▪ The lower 12 bits (page offset) is the same for virtual and physical addresses
(0x47C)

▪ Physical address = 0x7FFF47C

Carnegie Mellon

56

How do we translate addresses?

 Page table

▪ Has entry for each virtual page

▪ Each entry has:

▪ Valid bit: whether the virtual page is located in physical
memory (if not, it must be fetched from the hard disk)

▪ Physical page number: where the page is located

Carnegie Mellon

57

Page Table Example

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Virtual

Address
0x00002 47C

Hit

Physical

Page Number

1219

15 12

Virtual

Page Number

P
a
g
e
 T

a
b
le

Page

Offset

Physical

Address
0x7FFF 47C

Carnegie Mellon

58

Page Table Example 1

 What is the physical
address of virtual address
0x5F20?

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Hit

Physical

Page Number

15

P
a
g
e
 T

a
b
le

Carnegie Mellon

59

Page Table Example 1

 What is the physical
address of virtual address
0x5F20?

▪ VPN = 5

▪ Entry 5 in page table
indicates VPN 5 is in
physical page 1

▪ Physical address is 0x1F20

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Virtual

Address
0x00005 F20

Hit

Physical

Page Number

1219

15 12

Virtual

Page Number

P
a
g
e
 T

a
b
le

Page

Offset

Physical

Address
0x0001 F20

Carnegie Mellon

60

Page Table Example 2

 What is the physical
address of virtual address
0x73E0?

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Hit

Physical

Page Number

15

P
a
g
e
 T

a
b
le

Carnegie Mellon

61

Page Table Example 2

 What is the physical
address of virtual address
0x73E0?

▪ VPN = 7

▪ Entry 7 in page table is
invalid, so the page is not in
physical memory

▪ The virtual page must be
swapped into physical
memory from disk

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Virtual

Address
0x00007 3E0

Hit

Physical

Page Number

19

15

Virtual

Page Number

P
a
g
e
 T

a
b
le

Page

Offset

Carnegie Mellon

62

Page Table Challenges

 Page table is large

▪ usually located in physical memory

 Each load/store requires two main memory accesses:

▪ one for translation (page table read)

▪ one to access data (after translation)

 Cuts memory performance in half

▪ Unless we get clever…

Carnegie Mellon

63

Translation Lookaside Buffer (TLB)

 Use a translation lookaside buffer (TLB)

▪ Small cache of most recent translations

▪ Reduces number of memory accesses required for most
loads/stores from two to one

Carnegie Mellon

64

Translation Lookaside Buffer (TLB)

 Page table accesses have a lot of temporal locality

▪ Data accesses have temporal and spatial locality

▪ Large page size, so consecutive loads/stores likely to access same page

 TLB

▪ Small: accessed in < 1 cycle

▪ Typically 16 - 512 entries

▪ Fully associative

▪ > 99 % hit rates typical

▪ Reduces # of memory accesses for most loads and stores from 2 to 1

Carnegie Mellon

65

Example Two-Entry TLB

Hit
1

V

=

01

15 15

15

=

Hit
1Hit

0

Hit

19 19

19

Virtual

Page Number

Physical

Page Number

Entry 1

1 0x7FFFD 0x0000 1 0x00002 0x7FFF

Virtual

Address
0x00002 47C

1219

Virtual

Page Number

Page

Offset

V

Virtual

Page Number

Physical

Page Number

Entry 0

12
Physical

Address 0x7FFF 47C

TLB

Carnegie Mellon

66

Memory Protection

 Multiple programs (processes) run at once

▪ Each process has its own page table

▪ Each process can use entire virtual address space without worrying
about where other programs are

 A process can only access physical pages mapped in its
page table – can’t overwrite memory from another
process

Carnegie Mellon

67

Virtual Memory Summary

 Virtual memory increases capacity

 A subset of virtual pages are located in physical memory

 A page table maps virtual pages to physical pages – this is
called address translation

 A TLB speeds up address translation

 Using different page tables for different programs
provides memory protection

